ES/RP 531 Fundamentals of Environmental Toxicology

Lecture 19

Mass Transfer (Transport)

Transport Phenomena

- Diffusion
- Volatilization
- Runoff & Erosion
- Leaching

(Mass Transfer)

Diffusion

- Molecular scale process
 - Movement of molecules within a medium
 - Movement from higher concentrations to lower concentrations
 - Loss of spatial uneveness in the distribution of mass (concentration, or heat) manifested because of the second law of thermodynamics
 - Entropy increases until equilibrium is reached
 - System at lowest energy state at equilibrium

Diffusivity is related to molecular size of the contaminant and viscosity of the medium

Turbulent Diffusion

- Macroscopic level "diffusion"
 - Movement of medium itself redistributes
 the contaminant
 - Eddy diffusion

Diffusion occurs quickly over short distances (100 μ m) but very slowly over long distances.

Volatilization

Volatilization is influenced by temperature.

Volatilization is influenced by soil moisture and organic carbon.

Effect of Perturbations on Volatilization of PCBs

System	` \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	water (ng/L)	surface microlayer	
	0-5 mm depth		ng/cm ²	ng/cm ²
w/ midges	123	0	92	16
w/ worm & midges	37	6	76	8
sterile	56	0	0	0
no animals	145	0	0	0

Volatilization

	<u> </u>				
Pesticide	% Volatilized in 24 hours	Crop			
alachlor (Lasso)	1.1	fallow			
atrazine (Aatrex)	0.1	fallow			
simazine (Princep)	0.05	fallow			
EPTC (Eradicane)	33.6	alfalfa			
2,4-D	4.2	wheat			
trifluralin (Treflan)	41.4	fallow (moist)			
trifluralin (Treflan)	11.9	fallow (dry)			

Soil Models for Texture & Moisture Holding Capacity

Runoff & Erosion

Factors Affecting Surface Transport

- Rainfall timing & intensity
- Location of contaminant
- Contaminant properties
- Topography

Contaminant Properties Affecting Leaching

- Water solubility
- Sorption potential
- Volatilization potential
- Reactivity

Field Factors Affecting Leaching

- Precipitation & Irrigation
 - Volume
 - Intensity
- Soil Properties & Structure
 - Organic matter content
 - Clay content
 - > pH
 - Macropores

Reality is Irregular

Soil particles are irregular, creating small and lare pores.

Old root channels or earhworm burrows create macropores.

Macropores

- Large continuous openings in field soils
- May be continuous for distances of several meters in both vertical and lateral directions
- Characteristic of structured soils
- Cause preferential flow
 - aka macropore flow
 - ► flow velocities ~0.3 mm/sec -- 20 mm/sec

Macropores

- Pores formed by soil fauna
 - > ~1 mm >50 mm
- Pores formed by plant roots
 - > < 1 mm
- Pores formed by cracks & fissures
 - variable sizes

Preferential Flow

- Rapid movement of water along facilitated pathways resulting in water movement through only a fraction of the available pore space
 - macropores
 - heterogenous pore sizes

Breakthrough Curves

Volume of Water Leached

Importance of Preciptiation Rate & Infiltration Rate

- When precipitation rate is slow relative to infiltration rate, flow occurs through micropores
- When precipitation rate is close to infiltration rate, macropore flow occurs
- When precipitation rate exceeds infiltration rate, surface runoff occurs

Uniform Pores Piston Flow Mixing > Convection

Heterogenous Pores Convection > Mixing

Macropore Flow (Preferential Flow) Mixing > Convection Convection > Mixing

Aging of Residues Slows Leaching

Pignatello et al. 1993

Operational Factors Affecting Leaching

- Depth of Well
- Well Maintenance
- Timing of Application
- Waste Disposal Practices
- Irrigation System

Deeper Wells--Less Detections

USGS Analysis of Public Water Supply Wells (Central Columbia Plateau -- 1994)

Waste Disposal & GW Contamination

- Many agrichemical facilities with contaminated soil & wells
- High concentrations favor
 - persistence
 - leaching

Velocity of Leaching Is Affected by Concentration of Chemical

Recharge

- Irrigation in the Columbia Basin has raised the water table and the yearly recharge rate
 - Whitman Co.
 - 2 5 inches per yr
 - Franklin Co.
 - >10 inches per yr

Irrigation Style Affects Leaching

Microirrigation (Surface or Subsurface)

Proportional Disappearance of Pesticides from Soil by Different Pathways

