ES/RP 531 Fundamentals of Environmental Toxicology

Chemistry Review Addendum

Overview of Important Chemical Concepts

- Emphasis on valency of atoms and relevance for molecular bonding
- Emphasis on functional groups and the concept of polarity
- Emphasis on physicochemical properties
- Emphasis on phase transfer processes

Periodic Table of Elements																			
	<u>Groups</u>																		
7	1	2	3		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Ë	IA	IIA	IIIA		IVA	VA	VIA	VIIA		VIII	4	IB	IIB	IIIB	IVB	VB	VIB	VIIB	VIII
spe	IA	IIA	IIIB		IVB	VB	VIB	VIIB		VIII		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
								2											
L	H																		<u>He</u>
5	3	4												<u> </u>	<u>6</u>	Z	<u>8</u>	9	<u>10</u>
2	Li	<u>Be</u>												B	<u>C</u>	<u>N</u>	<u>0</u>	E	<u>Ne</u>
	11	12												13	14	15	<u>16</u>	17	<u>18</u>
J	Na	Mg												AI	Si	P	<u>S</u>	<u>CI</u>	Ar
4	<u>19</u>	<u>20</u>	<u>21</u>		22	<u>23</u>	<u>24</u>	<u>25</u>	<u>26</u>	<u>27</u>	<u>28</u>	<u>29</u>	<u>30</u>	<u>31</u>	<u>32</u>	22	- 24	<u>35</u>	<u>36</u>
4	<u>K</u>	<u>Ca</u>	<u>Sc</u>		Τi	<u>V</u>	<u>Cr</u>	<u>Mn</u>	Fe	<u>Co</u>	<u>Ni</u>	<u>Cu</u>	<u>Zn</u>	Ga	<u>Ge</u>	<u>As</u>	<u>Se</u>	<u>Br</u>	<u>Kr</u>
	37	<u>38</u>	<u>39</u>		40	<u>41</u>	42	43	<u>44</u>	<u>45</u>	<u>46</u>	47	48	<u>49</u>	<u>50</u>	<u>51</u>	<u>52</u>	33	<u>54</u>
JO	<u>Rb</u>	<u>Sr</u>	Y		<u>Zr</u>	<u>Nb</u>	<u>Mo</u>	<u>Tc</u>	<u>Ru</u>	<u>Rh</u>	<u>Pd</u>	Ag	<u>Cd</u>	<u>In</u>	<u>Sn</u>	<u>Sb</u>	Te	Ī	<u>Xe</u>
2	<u>55</u>	<u>56</u>	<u>57</u>	1	72	<u>73</u>	<u>74</u>	<u>75</u>	<u>76</u>	77	<u>78</u>	<u>79</u>	<u>80</u>	<u>81</u>	<u>82</u>	<u>83</u>	<u>84</u>	<u>85</u>	<u>86</u>
0	<u>Cs</u>	<u>Ba</u>	<u>La</u>		<u>Hf</u>	<u>Ta</u>	<u>W</u>	<u>Re</u>	<u>0s</u>	<u>Ir</u>	<u>Pt</u>	<u>Au</u>	Hg	<u>TI</u>	<u>Pb</u>	<u>Bi</u>	Po	At	<u>Rn</u>
-	<u>87</u>	88	<u>89</u>	2	104	105	106	107	108	109	110	111	112		114		116		118
Ĺ	<u>Fr</u>	<u>Ra</u>	<u>Ac</u>		<u>Rf</u>	<u>Db</u>	<u>Sq</u>	<u>Bh</u>	<u>Hs</u>	<u>Mt</u>	Uun	Uuu	Uub		Uuq		Uuh		Uuo

					of Ele	ctrons	in She			
Name	Symbol	Atomic	Atomic	1	2	3	4	5	Net	No. of
		Number	Mass	(K)	(L)	(M)	(N)	(0)	Charge of	Covalent
									Kernel	Bonds
Hydrogen	Н	1	1.008	1					1+	1
Helium	He	2	4.003	2					0	
Carbon	C	6	12.011	2	4				4+	4
Nitrogen	N	7	14.007	2	5				5+	$3, (4)^{c}$
Oxygen	0	8	15.999	2	6				6+	$2, (1)^{d}$
Fluorine	F	9	18.998	2	7				7+	1
Neon	Ne	10	20.180	2	8				0	
Phosphorus	Р	15	30.974	2	8	5			5+	3,5
Sulfur	S	16	32.060	2	8	6			6+	$2, 4, 6, (1)^{c}$
Chlorine	Cl	17	35.453	2	8	7			7+	1
Argon	Ar	18	39.948	2	8	8			0	
Bromine	Br	35	79.904	2	8	18	7		7+	1
Krypton	Kr	36	83.800	2	8	18	8		0	
Iodine	Ι	53	126.905	2	8	18	18	7	7+	1
Xenon	Xe	54	131.290	2	8	18	18	8	0	

Number of Covalent Bonds that Elements Can Have Helps Understand Molecular Structure

Element	Atomic Mass	# Electrons in Outer Orbital	# Covalent Bonds	
			Bonao	
Hydrogen (H)	1	1	1	
Carbon (C)	12	4	4	
Nitrogen (N)	14	5	3 (4)	
Oxygen (O)	16	6	2 (1)	
Fluorine (F)	19	7	1	
Phosphorus (P)	31	5	3, 5	
Sulfur (S)	32	6	2, 4, 6	
Chlorine (CI)	35.4	7	1	
Bromine	80	7	1	

Electronegativity increases from left to right across the rows of the periodic table.

Electronegativity decreases from top to bottom with a column of the periodic table.

H					Increasing	Kernel
2.2	С	Ν	0	F	Size	
	2.5	3.0	3.5	4.0		
		Р	S	Cl		ŕ
		2.2	2.5	3.0		
				Br		(
				2.8		
				Ι	•	
				2.5		•

The kernel refers to the electrons in the nucleus and the inner filled electron orbitals

Covalent Bonds

Formed
between
atoms by
sharing
electrons

Polarity (Polar Bonds)

- Owing to differences in electronegativity, sharing of electrons in the bonding orbitals may be unequal, I.e., toward one atom or the other
- Thus, positive (electron deficient) and negative (electron rich) poles are set up between atoms in a molecule

$$\begin{array}{ccc} \delta^+ & \delta^- \\ -C^- & O^- \end{array}$$

Ionic Bonding

Na⁺ Cl⁻

- When atoms of very large differences in EN bond, such as between column 7 and column 1 or 2 elements, then the electrons may be transferred from the atoms of lowest negativity too the atoms of highest negativity
- Thus, the atoms of highest EN would have a "permanent" negative charge
- The atoms of lowest EN would have a "permanent" positive charge

Hydrogen Bonding

- When hydrogen (H) is bonded to O or N, which are more electronegative, then the relatively positive H can be attracted to an electronegative atom on nearby molecules
 - Especially if the more EN atom as an unbonded pair of electrons
- Forms a hydrogen bond; not as strong as covalent or ionic bond, but it can form stable molecular interactions

$$\begin{array}{cccc} \delta^{-} & \delta^{+} & \delta^{-} \\ -O-H & \cdots & N- \end{array}$$

Geometry (Bond Angles)

- Atoms within molecules actually exist in definite geometric spatial relationships to one another that are characteristic of the type of bond
 - For ex., carbon atoms have four valence electrons, each oriented toward the corner of a tetrahedron;

Nitrogen often uses three valence electrons (with an unpaired electron available for bonding an electron deficient species like H); its spatial geometry tends to by trigonal

Geometry (Bond Angles)

Double bonds will make a molecule more rigid, giving the atoms less degrees of freedom to flop around and rotate about each other

Geometry (Bond Angles)

- Aromatic structures (alternating double bonds in ringed systems) tend to be planar (i.e., less free rotation of the carbon atoms)
 - Characterized by delocalized 'pi' electrons that can impart some electronegative character
 - Aromatic structures also are more stable than noncyclic structures

Note that double bonds in linear structures also have delocalized 'pi' bonds

Dipole Moment

- The overall polarity of a molecule depends on both the presence of polar bonds and on the geometry of the molecule
 - Planar, trigonal, tetrahedral
- The the determinant of overall polarity is the vector sum of the individual polar bonds, which is called the dipole moment

$$O = C = O \quad H_3C - OH$$

Carbon dioxide

Methanol

Intermolecular Forces

(a) van der Waals only

Attraction between molecules due to instantaneous dipole moments

Intermolecular Forces

dipole : induced dipole

Intermolecular Forces

(c) van der Waals + polar + H-bonding

The various intermolecular interactions can explain various physicochemical properties.

Substance	Molecular	Dipole	B oiling
	Mass	Moment	Point
		μ (D)	°K
propane, CH ₃ CH ₂ CH ₃	44	0.1	231
dimethyl ether, CH ₃ OCH ₃	46	1.3	248
methyl chloride, CH ₃ Cl	50	2.0	249
acetaldehyde, CH ₃ CHO	44	2.7	294
acetonitrile, CH ₃ CN	41	3.9	355

Functional Groups impart characteristics upon molecules that are important in intermolecular interactions and reactivity

-C-C-C-C-	alkyl (can be denoted by R)
R-OH	hydroxy (alcohol, if phenol then $R = -$)
R-SH	mercapto (thiol, mercaptan)
R ₁ -O-R ₂	ether
R_1 -S- R_2	sulfide (thioether)
$R_1 - N \leq \frac{R_2}{R_3}$	amino (primary amine, $R2 = R3 = H$ secondary amine, $R3 = H$ tertiary amine, $R1$, $R2$, $R3 = C$

aniline if R = -

O II

R-C-OH

carboxy (carboxylic acid)

ester (carboxylic acid ester)

 $\begin{matrix} O \\ II \\ R_1 - C - S - R_2 \end{matrix}$

thioester

 $R_1 - C - N \begin{pmatrix} R_2 \\ R_3 \end{pmatrix}$

Phosphate ester if X = O; Thiophosphate if X = S

amide

R-C=N

nitro,

R - N = O

nitroso

Saturation

$H_3C - CH_2 = CH_3$

Unsaturation

Physicochemical Properties

Water Solubility

- The amount of a substance that dissolves in a given quantity of water at a given temperature to form a saturated solution
 - Think of it as the escaping tendency of molecules from one another when placed in water

Limitations to Water Solubility

- Regular, highly ordered structure of water
 - Results from high degree of hydrogen bonding
 - Cause of very high surface tension for such a small molecule
 - Surface tension is the intermolecular, cohesive attraction between like molecules of a liquid that cause it to minimize its surface area
 - Cause the high boiling point of water
- A solute dissolving in water has to disrupt the orderly structure of water (with consequent energy costs)
 - Think of it as punching a hole in the water

Intramolecular attractions among water molecules give water its high surface tension; i.e., the amount of energy needed to overcome the molecular attractions

Hydrophilic Molecule in Water

Hydrophobic Molecule in Water

Phase Transfer Processes

- Reversible partitionings of dilute concentrations of a compound between two phases
 - Can be thought of as the "escaping" tendency of molecules from one phase into another (a.k.a. fugacity)
- Expressed by the partition coefficient
 - Ratio of the concentration of the chemical in one phase (air, soil, biological tissue, organic solvent) relative to the concentration in water

Organic Solvent-Water Partitioning

- Octanol-Water Partition Coefficient
 - Partitioning behavior is between two immiscible liquids
- Octanol used as the partitioning solvent against water
 - Surrogate for an organism's membranes
- K_{ow} = C_s/C_w, where C_s is the abundance in the organic solvent phase & C_w in the water

Kow

- If place an organic compound in water, and then add octanol, the compound will move from water into octanol until until the system is at equilibrium
 - The concentration at equilibrium would represent the lowest energy state
 - The lower the water solubility, the greater the tendency to move into the octanol phase

Oil:Water Χ X Χ X X X X X (X) X X

Octanol

Water

Octanol-Water Partition Coeff. (K_{ow})

Biological Significance of Kow

- Kow is often expressed in log form
 - For example, a Kow of 1000 would be express as log Kow = 3
 - The higher the log Kow, the comparatively greater the hydrophobicity
- Compounds with higher Kow's tend to diffuse across membranes faster compared to those with lower Kow's
 - However, there are some limitations to this generality at very high Kow's