

Overview of Important Chemical Concepts

- Emphasis on valency of atoms and relevance for molecular bonding
- Emphasis on functional groups and the concept of polarity
- Emphasis on physicochemical properties
- Emphasis on phase transfer processes

	Periodic Table of Elements																		
ı		Groups																	
H	1	2	3		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	IA	IIA	IIIA		IVA	VA	VIA	VIIA		VIII	4	18	IIB	IIIB	IVB	VB	VIB	VIIB	VIII
8	IA	IIA	IIIB	ı	IVB	VB	VIB	VIIB		VIII		18	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1 H											2 He							
2	1	4 2 2 8 2										10 Ne							
3	11 Na	12 13 1 15 16 17 Mg Al S P S CI										18 Ar							
4	19 K	20 Ca	21 Sc		22 Ti	23 ¥	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	As	Se Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y		40 Zr	41 Nb	42 Mo	43 To	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	1 18	54 Xe
6	55 Cs	<u>56</u> Ba	57 La	1	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 II	82 Pb	<u>B3</u> Bi	84 Po	85 At	86 Rn
7	<u>87</u> Fr	88 Ra	89 AC	2	104 Rf	105 0b	106 8g	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Jub		114 Uuq		116 Uuh		118

				#	of Ele	ctrons	in She	ella		
Name	Symbol	Atomic	Atomic	1	2	3	4	5	Net	No. of
	-	Number	Mass	(K)	(L)	(M)	(N)	(O)	Charge of	Covalent
					. ,		` ′	` ′	Kernel	Bonds
Hydrogen	Н	1	1.008	1					1+	1
Helium	He	2	4.003	2					0	
Carbon	C	6	12.011	2	4				4+	4
Nitrogen	N	7	14.007	2	5				5+	3, (4) ^c
Oxygen	0	8	15.999	2	6				6+	$2, (1)^d$
Fluorine	F	9	18.998	2	7				7+	1
Neon	Ne	10	20.180	2	8				0	
Phosphorus	P	15	30,974	2	8	5			5+	3.5
Sulfur	S	16	32.060	2	8	6			6+	2, 4, 6, (1) ^c
Chlorine	Cl	17	35.453	2	8	7			7+	1
Argon	Ar	18	39.948	2	8	8			0	
			=				_			
Bromine	Br	35	79.904	2	8	18	7		7+	1
Krypton	Kr	36	83.800	2	8	18	8		0	
Iodine	I	53	126.905	2	8	18	18	7	7+	1
Xenon	Xe	54	131,290	2	8	18	18	8	0	

Number of Covalent Bonds that Elements Can Have Helps Understand Molecular Structure

Element (Atomic Symbol)	Atomic Mass	# Electrons in Outer Orbital	# Covalent Bonds
Hydrogen (H)	1	1	1
Carbon (C)	12	4	4
Nitrogen (N)	14	5	3 (4)
Oxygen (O)	16	6	2 (1)
Fluorine (F)	19	7	1
Phosphorus (P)	31	5	3, 5
Sulfur (S)	32	6	2, 4, 6
Chlorine (CI)	35.4	7	1
Bromine	80	7	1

Electronegativity increases from left to right across the rows of the periodic table.

Electronegativity decreases from top to bottom with a column of the periodic table.

H
2.2

C N O F
2.5 3.0 3.5 4.0
P S CI
2.2 2.5 3.0
Br
2.8
I
I
The kernel refers to the electrons in the nucleus and the inner filled electron orbitals

Ionic Bonding

Na⁺ Cl⁻

- When atoms of very large differences in EN bond, such as between column 7 and column 1 or 2 elements, then the electrons may be transferred from the atoms of lowest negativity too the atoms of highest negativity
- Thus, the atoms of highest EN would have a "permanent" negative charge
- The atoms of lowest EN would have a "permanent" positive charge

Hydrogen Bonding

- When hydrogen (H) is bonded to O or N, which are more electronegative, then the relatively positive H can be attracted to an electronegative atom on nearby molecules
 - Especially if the more EN atom as an unbonded pair of electrons
- Forms a hydrogen bond; not as strong as covalent or ionic bond, but it can form stable molecular interactions

$$\delta^ \delta^+$$
 $\delta^ O-H$ ---- $N-$

Geometry (Bond Angles)

- Atoms within molecules actually exist in definite geometric spatial relationships to one another that are characteristic of the type of bond
 - For ex., carbon atoms have four valence electrons, each oriented toward the corner of a tetrahedron;
 - -Nitrogen often uses three valence electrons (with an unpaired electron available for bonding an electron deficient species like H); its spatial geometry tends to by trigonal

Geometry (Bond Angles)

 Double bonds will make a molecule more rigid, giving the atoms less degrees of freedom to flop around and rotate about each other

Geometry (Bond Angles)

- Aromatic structures (alternating double bonds in ringed systems) tend to be planar (i.e., less free rotation of the carbon atoms)
 - Characterized by delocalized 'pi' electrons that can impart some electronegative character
 - Aromatic structures also are more stable than noncyclic structures

- Note that double bonds in linear structures also have delocalized 'pi' bonds

Dipole Moment

- The overall polarity of a molecule depends on both the presence of polar bonds and on the geometry of the molecule
 - Planar, trigonal, tetrahedral
- The the determinant of overall polarity is the vector sum of the individual polar bonds, which is called the dipole moment

 H_3C-OH

Carbon dioxide

Methanol

The various intermolecular interactions can explain various physicochemical properties. Dipole B oiling Substance Molecular Point Mass Moment ٥K $\mu(D)$ propane, CH₃CH₂CH₃ 231 44 0.1 dimethyl ether, CH₃OCH₃ 248 46 1.3 2.0 methyl chloride, CH₃Cl 50 249 acetaldehyde, CH3CHO 2.7 44 294 acetonitrile, CH₃CN 41 3.9 355

· ·	s impart characteristics upon molecules t in intermolecular interactions and
-C-C-C-	alkyl (can be denoted by R)
R-OH	hydroxy (alcohol, if phenol then $R = -$)
R-SH	mercapto (thiol, mercaptan)
R ₁ -O-R ₂	ether
R ₁ -S-R ₂	sulfide (thioether)
$\begin{vmatrix} R_1 - N \leq \frac{R_2}{R_3} \end{vmatrix}$	amino (primary amine, R2 = R3 = H secondary amine, R3 = H tertiary amine, R1, R2, R3 = C
	aniline if $R = -$

$$\begin{array}{c} O \\ \parallel \\ R_1-C-R_2 \end{array} \qquad \text{carbonyl (ketone, aldehyde when R }_2=H \\ \\ O \\ \parallel \\ R-C-OH \qquad \text{carboxy (carboxylic acid)} \\ \\ O \\ \parallel \\ R_1-C-O-R_2 \qquad \text{ester (carboxylic acid ester)} \\ \\ O \\ \parallel \\ R_1-C-S-R_2 \qquad \text{thioester} \end{array}$$

Limitations to Water Solubility

- Regular, highly ordered structure of water
 - Results from high degree of hydrogen bonding
 - Cause of very high surface tension for such a small molecule
 - Surface tension is the intermolecular, cohesive attraction between like molecules of a liquid that cause it to minimize its surface area
 - Cause the high boiling point of water
- A solute dissolving in water has to disrupt the orderly structure of water (with consequent energy costs)
 - Think of it as punching a hole in the water

Phase Transfer Processes

- Reversible partitionings of dilute concentrations of a compound between two phases
 - Can be thought of as the "escaping" tendency of molecules from one phase into another (a.k.a. fugacity)
- Expressed by the partition coefficient
 - Ratio of the concentration of the chemical in one phase (air, soil, biological tissue, organic solvent) relative to the concentration in water

Organic Solvent-Water Partitioning

- Octanol-Water Partition Coefficient
 - Partitioning behavior is between two immiscible liquids
- Octanol used as the partitioning solvent against water
 - Surrogate for an organism's membranes
- K_{ow} = C_s/C_w, where C_s is the abundance in the organic solvent phase & C_w in the water

Kow

- If place an organic compound in water, and then add octanol, the compound will move from water into octanol until until the system is at equilibrium
 - The concentration at equilibrium would represent the lowest energy state
 - The lower the water solubility, the greater the tendency to move into the octanol phase

Biological Significance of Kow

- Kow is often expressed in log form
 - For example, a Kow of 1000 would be express as log Kow = 3
 - The higher the log Kow, the comparatively greater the hydrophobicity
- Compounds with higher Kow's tend to diffuse across membranes faster compared to those with lower Kow's
 - However, there are some limitations to this generality at very high Kow's