Overview of Important Chemical Concepts - Emphasis on valency of atoms and relevance for molecular bonding - Emphasis on functional groups and the concept of polarity - Emphasis on physicochemical properties - Emphasis on phase transfer processes | | Periodic Table of Elements |---|----------------------------|---------------------------------|----------|---|-----------|-----------|-----------|-----------------|-----------------|-----------|------------|-----------------|------------|----------|------------|-----------------|------------|----------|----------| | ı | | Groups | | | | | | | | | | | | | | | | | | | H | 1 | 2 | 3 | | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 1 | IA | IIA | IIIA | | IVA | VA | VIA | VIIA | | VIII | 4 | 18 | IIB | IIIB | IVB | VB | VIB | VIIB | VIII | | 8 | IA | IIA | IIIB | ı | IVB | VB | VIB | VIIB | | VIII | | 18 | IIB | IIIA | IVA | VA | VIA | VIIA | VIIIA | | 1 | 1
H | | | | | | | | | | | 2
He | | | | | | | | | 2 | 1 | 4 2 2 8 2 | | | | | | | | | | 10
Ne | | | | | | | | | 3 | 11
Na | 12 13 1 15 16 17 Mg Al S P S CI | | | | | | | | | | 18
Ar | | | | | | | | | 4 | 19
K | 20
Ca | 21
Sc | | 22
Ti | 23
¥ | 24
Cr | 25
Mn | 26
Fe | 27
Co | 28
Ni | 29
Cu | 30
Zn | 31
Ga | 32
Ge | As | Se
Se | 35
Br | 36
Kr | | 5 | 37
Rb | 38
Sr | 39
Y | | 40
Zr | 41
Nb | 42
Mo | 43
To | 44
Ru | 45
Rh | 46
Pd | 47
Ag | 48
Cd | 49
In | 50
Sn | 51
Sb | 52
Te | 1 18 | 54
Xe | | 6 | 55
Cs | <u>56</u>
Ba | 57
La | 1 | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
Ir | 78
Pt | 79
Au | 80
Hg | 81
II | 82
Pb | <u>B3</u>
Bi | 84
Po | 85
At | 86
Rn | | 7 | <u>87</u>
Fr | 88
Ra | 89
AC | 2 | 104
Rf | 105
0b | 106
8g | 107
Bh | 108
Hs | 109
Mt | 110
Uun | 111
Uuu | 112
Jub | | 114
Uuq | | 116
Uuh | | 118 | | | | | | # | of Ele | ctrons | in She | ella | | | |------------|--------|--------|---------|-----|--------|--------|--------|------|-----------|---------------------------| | Name | Symbol | Atomic | Atomic | 1 | 2 | 3 | 4 | 5 | Net | No. of | | | - | Number | Mass | (K) | (L) | (M) | (N) | (O) | Charge of | Covalent | | | | | | | . , | | ` ′ | ` ′ | Kernel | Bonds | | Hydrogen | Н | 1 | 1.008 | 1 | | | | | 1+ | 1 | | Helium | He | 2 | 4.003 | 2 | | | | | 0 | | | | | | | | | | | | | | | Carbon | C | 6 | 12.011 | 2 | 4 | | | | 4+ | 4 | | Nitrogen | N | 7 | 14.007 | 2 | 5 | | | | 5+ | 3, (4) ^c | | Oxygen | 0 | 8 | 15.999 | 2 | 6 | | | | 6+ | $2, (1)^d$ | | Fluorine | F | 9 | 18.998 | 2 | 7 | | | | 7+ | 1 | | Neon | Ne | 10 | 20.180 | 2 | 8 | | | | 0 | | | Phosphorus | P | 15 | 30,974 | 2 | 8 | 5 | | | 5+ | 3.5 | | Sulfur | S | 16 | 32.060 | 2 | 8 | 6 | | | 6+ | 2, 4, 6, (1) ^c | | Chlorine | Cl | 17 | 35.453 | 2 | 8 | 7 | | | 7+ | 1 | | Argon | Ar | 18 | 39.948 | 2 | 8 | 8 | | | 0 | | | | | | = | | | | _ | | | | | Bromine | Br | 35 | 79.904 | 2 | 8 | 18 | 7 | | 7+ | 1 | | Krypton | Kr | 36 | 83.800 | 2 | 8 | 18 | 8 | | 0 | | | Iodine | I | 53 | 126.905 | 2 | 8 | 18 | 18 | 7 | 7+ | 1 | | Xenon | Xe | 54 | 131,290 | 2 | 8 | 18 | 18 | 8 | 0 | | #### Number of Covalent Bonds that Elements Can Have Helps Understand Molecular Structure | Element (Atomic Symbol) | Atomic
Mass | # Electrons in
Outer Orbital | # Covalent
Bonds | |-------------------------|----------------|---------------------------------|---------------------| | Hydrogen (H) | 1 | 1 | 1 | | Carbon (C) | 12 | 4 | 4 | | Nitrogen (N) | 14 | 5 | 3 (4) | | Oxygen (O) | 16 | 6 | 2 (1) | | Fluorine (F) | 19 | 7 | 1 | | Phosphorus (P) | 31 | 5 | 3, 5 | | Sulfur (S) | 32 | 6 | 2, 4, 6 | | Chlorine (CI) | 35.4 | 7 | 1 | | Bromine | 80 | 7 | 1 | Electronegativity increases from left to right across the rows of the periodic table. Electronegativity decreases from top to bottom with a column of the periodic table. H 2.2 C N O F 2.5 3.0 3.5 4.0 P S CI 2.2 2.5 3.0 Br 2.8 I I The kernel refers to the electrons in the nucleus and the inner filled electron orbitals #### **Ionic Bonding** ### Na⁺ Cl⁻ - When atoms of very large differences in EN bond, such as between column 7 and column 1 or 2 elements, then the electrons may be transferred from the atoms of lowest negativity too the atoms of highest negativity - Thus, the atoms of highest EN would have a "permanent" negative charge - The atoms of lowest EN would have a "permanent" positive charge #### Hydrogen Bonding - When hydrogen (H) is bonded to O or N, which are more electronegative, then the relatively positive H can be attracted to an electronegative atom on nearby molecules - Especially if the more EN atom as an unbonded pair of electrons - Forms a hydrogen bond; not as strong as covalent or ionic bond, but it can form stable molecular interactions $$\delta^ \delta^+$$ $\delta^ O-H$ ---- $N-$ #### Geometry (Bond Angles) - Atoms within molecules actually exist in definite geometric spatial relationships to one another that are characteristic of the type of bond - For ex., carbon atoms have four valence electrons, each oriented toward the corner of a tetrahedron; - -Nitrogen often uses three valence electrons (with an unpaired electron available for bonding an electron deficient species like H); its spatial geometry tends to by trigonal #### Geometry (Bond Angles) Double bonds will make a molecule more rigid, giving the atoms less degrees of freedom to flop around and rotate about each other #### Geometry (Bond Angles) - Aromatic structures (alternating double bonds in ringed systems) tend to be planar (i.e., less free rotation of the carbon atoms) - Characterized by delocalized 'pi' electrons that can impart some electronegative character - Aromatic structures also are more stable than noncyclic structures - Note that double bonds in linear structures also have delocalized 'pi' bonds #### **Dipole Moment** - The overall polarity of a molecule depends on both the presence of polar bonds and on the geometry of the molecule - Planar, trigonal, tetrahedral - The the determinant of overall polarity is the vector sum of the individual polar bonds, which is called the dipole moment H_3C-OH Carbon dioxide Methanol #### The various intermolecular interactions can explain various physicochemical properties. Dipole B oiling Substance Molecular Point Mass Moment ٥K $\mu(D)$ propane, CH₃CH₂CH₃ 231 44 0.1 dimethyl ether, CH₃OCH₃ 248 46 1.3 2.0 methyl chloride, CH₃Cl 50 249 acetaldehyde, CH3CHO 2.7 44 294 acetonitrile, CH₃CN 41 3.9 355 | · · | s impart characteristics upon molecules
t in intermolecular interactions and | |--|--| | -C-C-C- | alkyl (can be denoted by R) | | R-OH | hydroxy (alcohol, if phenol then $R = -$) | | R-SH | mercapto (thiol, mercaptan) | | R ₁ -O-R ₂ | ether | | R ₁ -S-R ₂ | sulfide (thioether) | | $\begin{vmatrix} R_1 - N \leq \frac{R_2}{R_3} \end{vmatrix}$ | amino (primary amine, R2 = R3 = H secondary amine, R3 = H tertiary amine, R1, R2, R3 = C | | | aniline if $R = -$ | $$\begin{array}{c} O \\ \parallel \\ R_1-C-R_2 \end{array} \qquad \text{carbonyl (ketone, aldehyde when R }_2=H \\ \\ O \\ \parallel \\ R-C-OH \qquad \text{carboxy (carboxylic acid)} \\ \\ O \\ \parallel \\ R_1-C-O-R_2 \qquad \text{ester (carboxylic acid ester)} \\ \\ O \\ \parallel \\ R_1-C-S-R_2 \qquad \text{thioester} \end{array}$$ #### Limitations to Water Solubility - Regular, highly ordered structure of water - Results from high degree of hydrogen bonding - Cause of very high surface tension for such a small molecule - Surface tension is the intermolecular, cohesive attraction between like molecules of a liquid that cause it to minimize its surface area - Cause the high boiling point of water - A solute dissolving in water has to disrupt the orderly structure of water (with consequent energy costs) - Think of it as punching a hole in the water #### **Phase Transfer Processes** - Reversible partitionings of dilute concentrations of a compound between two phases - Can be thought of as the "escaping" tendency of molecules from one phase into another (a.k.a. fugacity) - Expressed by the partition coefficient - Ratio of the concentration of the chemical in one phase (air, soil, biological tissue, organic solvent) relative to the concentration in water ## Organic Solvent-Water Partitioning - Octanol-Water Partition Coefficient - Partitioning behavior is between two immiscible liquids - Octanol used as the partitioning solvent against water - Surrogate for an organism's membranes - K_{ow} = C_s/C_w, where C_s is the abundance in the organic solvent phase & C_w in the water #### Kow - If place an organic compound in water, and then add octanol, the compound will move from water into octanol until until the system is at equilibrium - The concentration at equilibrium would represent the lowest energy state - The lower the water solubility, the greater the tendency to move into the octanol phase ### Biological Significance of Kow - Kow is often expressed in log form - For example, a Kow of 1000 would be express as log Kow = 3 - The higher the log Kow, the comparatively greater the hydrophobicity - Compounds with higher Kow's tend to diffuse across membranes faster compared to those with lower Kow's - However, there are some limitations to this generality at very high Kow's