

Instructor: Allan Felsot afelsot@tricity.wsu.edu

Fall 2005

ES/RP 531 Fundamentals of Environmental Toxicology

Lecture 24
Biomarkers & Contaminant
Residues

Use of Biomarkers

- Biochemical, physiological, or histological indicators of either exposure to or effects of contaminants (or even natural products) at the suborganismal or organismal level of organization
- Generally measure sublethal effects in live organisms at the time of collection
- · Specific and non-specific for contaminants
- May only be indicative of exposure, not an adverse effect
- Must overcome problems related to within population variability and between population variability

Examples of Biomarkers

- · Enzymes
 - AChE (acetylcholinesterase)
 - Cyt P4501A1 (a.k.a. aryl hydrocarbon hydroxylase)
 - Use of EROD assay to determine level of induction ofP4501A1 by Ah receptor agonists
 - ALAD (delta-aminolevulinic acid dehydratase)
 - Inhibited activity may be Indicative of lead exposure (applicable to animals with hemoglobin or other hemecontaining biomolecules)
 - ATPase
 - Plant enyzmes (peroxidase; RUBISCO)

Examples of Biomarkers

- Energetics
 - Adenylate energy charge
 - Energy reserves
 - Whole body calorimetry
 - Enzymes of intermediary metabolism
 - Growth

Examples of Biomarkers

- Endocrine
 - Hormone levels
 - Protein synthesis under endocrine control
 - · For ex., vitellogenin
- · Blood chemistry
- · Growth Rate
 - RNA and protein synthesis

Use of Biomarkers

- Biochemical, physiological, or histological indicators of either exposure to or effects of contaminants (or even natural products) at the suborganismal or organismal level of organization
- Generally measure sublethal effects in live organisms at the time of collection
- · Specific and non-specific for contaminants
- May only be indicative of exposure, not an adverse effect
- Must overcome problems related to within population variability and between population variability
- Must understand how environmental conditions during development affects biomarker response

Comparison of AChE Activity (nmol/min/mg) in Frogs from Sierra Nevada and California Coastal Sites

Population Origin	Rearing Temperature @ 8°C	Rearing Temperature @ 19°C
Coastal CA	28.2 ± 10.2	38.7 ± 11.2
Sierras	26.4 ± 9.9	42.3 ± 17.3

Johnson et al. (2005) Environ. Toxicol. Chem. 24:2074

"Residues"

- Residues refer to chemical contaminants in the physical environment and in biological tissues
 - The constituents of chemical products (or formulations) become residues when they are dispersed into the environment

Residue Amount

- Expressed as a concentration
 - Unit of mass per volume or surface area
 - ✓ Milligrams per Liter (mg/L) (or per square meter)
 - \checkmark Micrograms per milliliter (μ g/mL) (or per sq. cm)
 - A proportion
 - √ 1% (1 part per 100)
 - ✓ 0.0001% (1 part per million)
 - A molar quantity
 - ✓ Moles/L (if in solution)
 - One mole = the molecular weight of a substance in grams
 - 1 μmol = the molecular weight in micrograms

What Does It Mean?

- Usual range of detections many environmental contaminants ranges from ppt (parts per trillion) - ppb (parts per billion)
 - ➤ From the perspective of purity, that translates to
 - **-** 99.999999999% -- 99.9999999%
 - ► I.e., if 1 ppb = 0.0000001%, then 100% 0.0000001% yields 99.9999999%

Consequences of Increased Analytical Capability

- Contaminant residues are in places we would never expect to see them
- Contaminant residues seem to be everywhere
- Tendency to want to lower regulatory standards to the level of detectability

Pesticide Residues--Frequencies/Identities/Concentrations

Relevant Questions

- Method Detection Limit
- Method Quantitation Limit
- Concentrations
 - means
 - ► medians
 - geometric mean
 - percentiles

	Reliable Data Decisions	
Possible	Analyte Not Present	Analyte Present
Decisions: Detected Not Detected	Incorrect Decision	Correct
	False Positive (Type I Error)	Decision
	Correct Decision	Incorrect Decision
		False Negative (Type II Error)

Monitoring Programs

Monitoring Programs

- -USGS NAWQA (National Water Quality Assessment Program)
- -State Water Quality Monitoring Programs
 - Under mandate by the Clean Water Act
 - Potable water under mandate of the Safe Drinking Water Act

USGS NAWQA Program

Goal

 Help support the development and evaluation of management, regulatory, and monitoring decisions by other Federal, State, and local agencies to protect, use, and enhance water resources

USGS NAWQA Program

Implementation

- Investigations at 60 of the most important river basins and aquifer systems (aka study units)
- Represent a diversity of hydrogeologic conditions
- ~70% of U.S> freshwater use occurs within the study units

