

Instructor: Allan Felsot afelsot@tricity.wsu.edu

Fall 2005

ES/RP 531 Fundamentals of Environmental Toxicology

Lecture 22

Abiotic/Biotic Degradation & Transformation (Environmental Attenuation of Contaminants)

Attenuation Processes

- Transformation of parent molecule to either toxic or nontoxic product forms
- Reduction in concentration
 - Distinguished from simple dilution or transport out of a specific area by change in molecular structure

Definitions

- Degradation
 - Decrease in concentration of a contaminant due to nonreversible alteration of chemical structure
- Mineralization
 - Biologically mediated degradation of chemical resulting in release of carbon dioxide
- Persistence
 - Longevity of a contaminant residue in a medium or phase
- Detoxification
 - Degradation resulting in loss of toxicity or biological activity

Definitions

- Transformation
 - Partial change in structure of a contaminant due to biological or nonbiological reaction
 - Transformation product may still retain toxicity
- Bound residue
 - The residue remaining after exhaustive extraction of a soil, water, or plant matrix
 - Covalent incorporation of a transformation product into the natural biochemical matrix

Degradation Products

The degradation process results in changed molecular structure

- Inactivation (detoxification)
- Activation (toxification)
- Mineralization (CO₂ & H₂O)
- Bound to Organic Matrix

Reaction Mechanisms

- The processes by which a chemical is degraded
- Divided into two basic mechanisms
 - Phase I (biologically or nonbiologically mediated)
 - √ Hydrolysis
 - ✓ Oxidation
 - ✓ Reduction
 - Phase II (biologically mediated)
 - ✓ Conjugation

Considerations

- Chemical reactions in the environment occur much slower than dissociation processes in solution
 - For example, deprotonation of an acid (i.e., dissociation of a proton in response to solution pH is faster than a chemical reaction)
 - Thus, we're interested in the rates (kinetics) of the reactions and the mechanisms (what kinds of transformation products)
 - We are also interested in how environmental variables affect rate and mechanisms

Abiotic vs. Biotic Reactions

- · Location of relevant reaction type
 - Soil & water--abiotic and biotic
 - Plants and animals--biotic only
- End Products
 - Abiotic reactions lead to other organic compounds (or speciation of metals)
 - Biotic reactions lead to other organic compounds and/or carbon dioxide
- Catalysts
 - Abiotic--chemical (metals, water) & photolytic (UV)
 - Biotic--enzymes

Reaction Kinetics

Rate Law=a mathematical function or differential equation describing the turnover rate of a compound as a function of the concentration

Power Rate Law

$$Rate = \frac{-dC}{dT} = kC^n$$

First Order when n = 1

$$\frac{d[C]_{t}}{dt} = -k[C]_{0} \quad \text{Differential eq.}$$
or
$$[C]_{t} = [C]_{0} \cdot e^{-kt} \quad \text{Integrated eq.}$$

$\ln[C] = -kt + \ln[C]_0$ $\ln[C] = \ln 2/k = 0.693/k$ Half-life is independent of concentration

Reaction Kinetics

- First Order
- Zero Order
 - Disappearance of compound is independent of concentration
- Second Order
 - A second species involved in the disappearance is rate limiting
 - For ex., hydrolysis reaction where base is limited in concentration
 - Can be reduced to pseudo-first order by considering that one of the reactants (for ex., water) is at a much larger concentration then the other reactant and therefore not rate limiting)

Hydrolysis Reactions

- Nucleophilic substitutions
 - Proton, water, or hyroxyl is nucleophile
 - Attracted to electron deficient atom
- pH dependent
- Abiotic
- Products same as for biotic rxs.

Typical Hydrolysis Reaction
(Nucleophilic Substitution)

$$R_2 \longrightarrow R_2 \longrightarrow R$$

$ \begin{array}{c} R_1 \\ N - C - O - R_3 \\ R_2 \end{array} $		Substituents structure influences reaction rate		
R1	R2	R3	(M ⁻¹ s ⁻¹)	Half-Life @ pH 7
СН3—	CH ₃ —	—СH ₂ СН ₃	4.5E-06	50,000 y
СН3—	\bigcirc	—CH ₂ CH ₃	4.0E-06	55,000 y
СН3—	CH ₃ —	$ \bigcirc$ -NO ₂	4.0E-04	550 y
н—	CH ₃	-NO ₂	6.0E02	3 h
н—	CH ₃	——————————————————————————————————————	5.6E-01	70 d
н—	CH ₃		5.0E01	33 h

PI	hoi	tol.	ysi	S

Bond	Bond Energy (kJ mol ⁻¹)	Wavelength (nm)
O-H	465	257
Н-Н	436	274
C-H	415	288
N-H	390	307
C-0	360	332
C-C	348	344
C-Cl	339	353
Cl-Cl	243	492
Br-Br	193	630
0-0	146	820

Whether a reactions will take place depends on the probability that a given compound absorbs a specific wavelength of light or on the probability that the excited molecular species undergoes a particular reaction.

Photodegradation Is Faster in Dirty Water

- Malathion photolysis in distilled water (pH 6) in presence of light
 - $-T_{1/2} = 990 \text{ hours}$
- Malathion photolysis in Suwannee River water (a lot of humic material)
 - $T_{1/2} = 16 \text{ hours}$

Photodegradation is only effective in soil when a chemical is at the soil surface

Biochemical Ecology of Biodegradation

- End products represent
 - Mineralizations
 - Transformations
- Biochemical reactions involve catalysis by enzymes

Conceptualization of Biodegradation

- Bacterial cell containing enzymes takes up chemical
- 2. Chemical binds to suitable enzyme
- 3. Enzyme-chemical complex reacts, producing transformation products
- 4. Products released from enzyme
- Sorption in soil may influence processes above
- 6. Production of new or additional enzyme capacity (induction, activation)
- Growth of total microbial population, & thus biodegradation capacity

Rate of Biodegradation (Considerations Beyond Enzyme-Substrate Interactions)

- Rate of delivery of substrate molecules to the microbial cells
- Rate of diffusion of substrate across intervening media
- Rate of uptake by microbial cells
- Biochemical effects
 - Enyzme induction
 - De-repression of enzyme
 - ► Mutation
 - Constitutive enzyme
 - Adaptation

Anaerobic Biodegradation

•Alternative electron acceptors (ie., alternative to O₂)

- •Methanogenesis (CO₂; methane)
- •Sulfate Reduction (SO₄; hydrogen sulfate)
- •Denitrification (Nitrate; N₂)

Microbial Biochemical Ecological Strategies

- Mineralization
- Cometabolism
- Consortia
- Plasmid exchange

Factors Influencing Degradation

- Concentration of chemical
- Temperature
- Moisture
- Sunlight
- Soil type and characteristics (texture, pH, OC)
- Nutrients
- Product formulation ingredients
- Other chemicals and previous exposures
- Aging of residues

