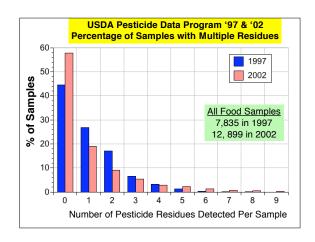

Instructor: Allan Felsot afelsot@tricity.wsu.edu
Fall 2005


ES/RP 531 Fundamentals of Environmental Toxicology

Lecture 19 Chemical Interactions & Mixtures (Dose/Response Assessment 2)

Chemical Mixtures & Interactions--Why Care?

- PNW waters with multiple pesticide residues
- Multiple pesticide residues on certain commodities
- Routine use of multiple pesticides & surfactants in tank mixes of pesticides
- Ubiquitous residues of multiple congeners of PAHs, PCBs, dioxins (PCDDs)
- Household consumer products are formulations are mixtures
- · Gasoline is a mixture of solvents
- Heavy metals

Chemical Interactions & Biological Responses

- It's All Natural
- Chemical Interaction Basics
- Chemical Mixtures & Health
- Chemical Mixtures & Ecological Effects
- Chemical Mixtures & Agroecosystems

You Are What You Eat

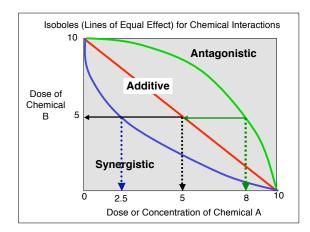
Selected Flavor Components of Camembert Cheese

- Acetic acid
- Propionic acid
- Butanoic acid
- Oleic acid
- Methand
 Ethanol
- Octanol
- Acetone
- Ethyl acetate
- Diethyl phthalate
- Hydrogen sulfide
- Methyl mercaptan
- Phenol
- Cresol

Sable & Cottenceau 1999 JAFC 47:4825

Possible Chemical Interactions

Neutrality--no measurable effect Additivity


1X dose A + 1X dose B = 2X effect

Synergism & Potentiation

1X dose A + 1X dose B = 10X effect

Antagonism

1X dose A + 1X dose B = 0.5X effect

Toxic Units Approach

$$TU_{mix} = \frac{LC_{50} A_{(mix)}}{LC_{50} A_{(alone)}} + \frac{LC_{50} B_{(mix)}}{LC_{50} B_{(alone)}}$$

- If TU = 1, then interaction is additive
- ullet If TU < 1, then synergistic
- If TU > 1, then antagonistic
- Note: have to allow for variability in responses; thus, values as low as 0.8 would still be additive

Interaction of		es Found in Wester Are Additive	n Waters	
Test ID	L(ppb ir	50 n water Chlorpyrifos	Toxic Units	
Single Component	0.43	0.068		
Mixture	0.25	0.032	1.1	
(Bailev et al. 1997 ETAC 16:2304)				

Synergism Between an Insecticide & Herbicide Effects on Oat Growth

Phorate	Diuron Dosage (ppm)				
Dosage (ppm)	0	0.25	0.50	0.75	1.00
0	1.98	1.95	2.28	1.86	1.83
3	1.90	1.90	2.00	1.89	1.20
6	1.71	1.76	2.11	1.75	0.90
9	1.79	1.95	1.84	1.43	0.68
12	1.86	1.92	1.91	1.32	0.62

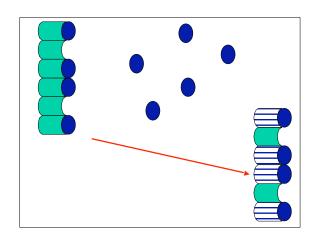
Nash 1981 Weed Sci. 29:147

Need Data?						
Number	Number	Cost of Entire Test Series (\$Millions)				
of Chemicals	of Tests	1,000		dividual To 100,000	est 1,000,000	
1	1	0.001	0.01	0.1	1	
2	2	0.002	0.02	0.2	2	
5	120	0.12	1.2	12	120	
10	3,628,800	3,629	36,288	362,880	3,628,800	

Cannot Practically Test Every Combination

- Rely on basic biochemical mechanisms of toxic action for individual compounds
 - Determine whether mode of action is similar or dissimilar between chemicals
- Rely on metabolic pathway and clearance (excretion) rates
 - Toxicokinetics
 - Determine whether one chemical could interfere with metabolism of other

Mode of Action


- Acetylcholinesterase inhibition
 - OP & carbamate insecticides
- Nerve membrane interactions (Na gate)
 - > DDT, pyrethroid insecticides
- Amino acid synthesis inhibition
 - SU, imidazolinone herbicides
 - Glyphosate
- Auxin agonists
 - Phenoxy and pyridinyl carboxylate herbicides

Joint Toxicity & Same MOA

- Invertebrate toxicity & OP insecticides
 - Additive interactions shown
 - ► Concentrations a significant percentage of LC₅₀
 - The 99th percentile levels of chlorpyrifos and diazinon in some basins (San Joaquin-Tulare) are within the range needed to produce measurable additive interactions
 - No studies on interactions at known environmental levels (ppt)

Joint Toxicity & Same MOA

- Must consider concentration of chemicals in the mix
 - If concentrations are significantly below the NOEL, they are likely not going to interact sufficiently with the biochemical target site to cause a physiological effect
 - Must consider affinity (Km) and binding constants (Ki)
 - ✓ Kinetics are concentration dependent

Joint Toxicity & Dissimilar MOA

- Invertebrate toxicity & OP/Herbicide mixtures
 - Atrazine concluded to synergize several OPs (Pape-Lindstrom & Lydy, 1997, ETAC 16:2415-2420)
 - ✓ OPs were significant percentage of LC₅₀
 - ► However, atrazine levels ranged between 5,000 and 20,000 ppb
 - ✓ Maximum level of atrazine in Willamette Basin was 4.5 ppb
 - Atrazine & methoxychlor were anatagonistic!!

All Chemicals Considered....

- Four basic metabolic pathways
 - Oxidations
 - ✓ Microsomal oxidases (cytochrome P-450 isozyme complex)
 - ► Hvdrolvses
 - ✓ Esterase enzymes
 - Reductions
 - Conjugations
 - ✓ After oxidation or hydrolysis, linkage to a peptide or sugar and excretion
 - ✓ Involves glutathione transferases

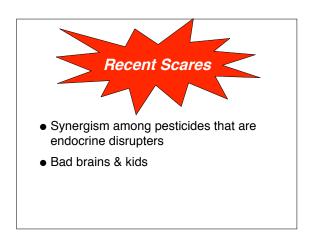
OP Insecticide Metabolism

- Most current OP insecticides need to be metabolically activated in body
 - ➤ P=S -----> P=O transformation
 - ✓ Mediated by P-450 oxidation
- P-450 could also detoxify OPs
- · Esterases detoxify OPs
- Glutathione transferases important in detoxifying certain insecticides and herbicides

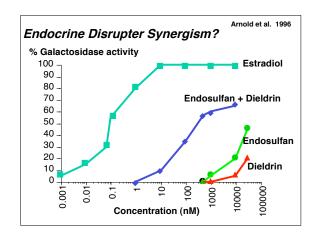
Predicting OP Toxicity When in Mixtures

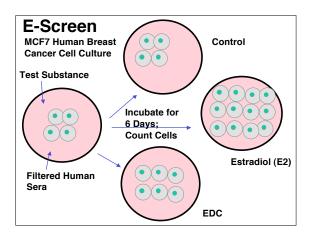
- Interactions Mediated Through P-450
 - ► If P450 is inhibited, then toxicity will change (+ or -)
 - ➤ If P450 is induced, then toxicity will change (+ or -)
- Interactions Mediated Through Esterases
 - ► If esterases are inhibited, then toxicity will increase

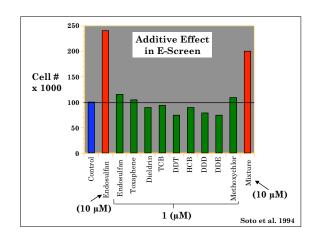
Well Known Synergists


- Methylene dioxyphenyls
 - ► Piperonyl butoxide (PBO)
 - ➤ Secondary plant compounds
 - ✓ myristicin (parsnips & carrots)
 - ✓ piperonal & piperine (black pepper)
 - ► Both inhibit cyt. P-450 & induce it
 - ✓ Can synergize compounds like phorate
 - ✓ Definitely known to synergize pyrethrum

A Case of OP Synergism


- Malathion is detoxified by an esterase known as carboxyesterase
- Carboxyesterases can by inhibited by certain OP insecticides
 - ► EPN
 - → isomalathion
 - ✓ A toxic rearrangement product (or by-product of manufacture) that can be produced under certain conditions in malathion formulations


Dealing with Toxicity of Mixtures & "Aggregating" Measures of Environmental Concentration & Potential Exposure • Toxic Equivalents (TEQ) • Toxic Equivalency Factor (TEF) TEQ_{2,3,7-STCDD} = sum[PCDD_i x TEF_i] + sum[PCDF_i x TEF_i]


Congener	EPA	Recent WHO
	TEFs	recommendatior
2,3,78-TetraCDD (TCDD)	1	1
1,2,3,7,8-PentaCDD	0.5	1
1,2,3,4,7,8-HexaCDD	0.1	0.1
1,2,3,6,7,8-HexaCDD	0.1	0.1
1,2,3,7,8,9-HexaCDD	0.1	0.1
1,2,3,4,6,7,8-HeptaCDD	0.01	0.01
OctaCDD	0.001	0.0001
2,3,78-TetraCDF	0.1	0.1
1,2,3,7,8-PentaCDF	0.05	0.05
2,3,4,7,8-PentaCDF	0.5	0.5
1,2,3,4,7,8-HexaCDF	0.1	0.1
1,2,3,6,7,8-HexaCDF	0.1	0.1
1,2,3,7,8,9-HexaCDF	0.1	0.1
2,3,4,6,7,8-HexaCDF	0.1	0.1
1,2,3,4,6,7,8-HeptaCDF	0.01	0.01
1,2,3,4,7,8,9-HeptaCDF	0.01	0.01
OctaCDF	0.001	0.0001

Study links pesticides to brain damage in kids

Children exposed to pesticides in the womb or at an early age may suffer permanent brain defects that could change their lives by altering their behavior and their ability to do everything from drawing a picture to catching a ball, according to new scientific

tion and other mental and phys ical skills when comparing Yaqui Indian preschoolers in an agrarian region with those in adjacent foothills where no pesti-cides are used.

Another study, in rural western Minnesota, found increased birth defects in children conceived during the spring growing season.

The Porter "Bad Brains" Study

- Gave young rats drinking water with mixtures of nitrate. aldicarb, and atrazine
 - ➤ Concentrations were ~ 3X the MCLs (Maximum Contaminant
 - Dosing duration on order of weeks
- Parameters measured
 - Spleen weight
 - Thyroid hormone levels
 - ► Immunocompetency (plaque forming ability)
 - ► Behavior (aggression index)

The Porter "Bad Brains" Study

- Exposure tests repeated up to 8 times over a two year period
- Conclusions
 - Mixtures of chemicals caused adverse biochemical and behavioral effects not observed with single chemical exposures

Ratio of Number of Experiments with Calculated Statistically Significant Outcomes Relative to the Total Number of Experiments (Porter et al. 1999)

Exposure Mix	Spleen Weight	Thyroid Hormone	Aggression Score	Plaque Assay
aldicarb (ald)	1/7	1/9	0/6	1/8
atrazine (atz)	0/7	0/9	0/6	1/8
nitrate (N)	0/7	0/9	1/6	0/8
ald-atz	1/7	0/9	0/6	2/8
ald-N	1/7	0/9	0/6	2/8
atz-N	0/7	1/9	1/6	3/8
ald-atz-N	0/7	1/9	1/6	0/8

Conclusions

- Impossible to study all mixture combinations
- Can predict effects by studying basic biochemical mechanism and two compound interactions
- Interactive effects occur at doses that represent substantial percentages of the LD₅₀
- Usually additive
- Synergisms actually rare
- Interactions at environmentally relevant concentrations unlikely, but not well studied