

Instructor: Allan Felsot afelsot@tricity.wsu.edu

Fall 2005

ES/RP 531 Fundamentals of Environmental Toxicology

Lecture 15
Soft Tissue Toxicity (Carcinogenicity)

Definitions

- Mutagen / Mutagenicity
 - a substance directly interacting with DNA, causing a change in its structure
- Oncogen / Oncogenicity
 - a substance causing benign or malignant tumors
 - chronic disease characterized by benign or malignant tumors
- Carcinogen / Carcinogenicity
 - substance capable of causing malignant tumors
 - a chronic disease marked by malignant tumors

A Few Comments on Carcinogenicity Testing

- · Battery of tests
 - Mutagenicity
 - Clastogenicity
 - Tumorigenicity
 - Carcinogenicity
- Must use MTD (maximum tolerated dose)
 - Usually use three doses total and a no-dose control
- Modern carcinogenesis theory

Maximum Tolerated Dose

- Highest dose of toxicant during the choronic study that can be predicted not to alter the animal's longevity through effects other than carcinogenicity
- Causes no more than a 10% weight decrement as compared to the non-dosed control group
- Does not produce clinical signs of toxicity
- Doest not cause pathological lesions other than those that may be related to a <u>neoplastic</u> response (i.e., abnormal cell growth)
- Does not shorten animal's life span

Neoplasm ("new growth") = tumor (swelling or mass)

Mutations Are Normal & Frequent

- ~100,000 oxidative DNA hits per day in rat
- ~10,000 oxidative DNA hits per day in human
- Most of these mutations are repaired, but mutations still can accumulate in cell lines during aging

Estimates by Ames et al. 1993

Contraverting Repair Mechanisms

- Mutations normally repaired
- High doses lead to cell death and chronic cell division in an attempt to replace dead cells
 - More probability of mutations because of repair mistakes, especially if cells suffering toxicity

Why Mechanism of Interaction
Is Important in Understanding
Carcinogenicity and the
Relationship to Dose

Ellwein & Cohen 1990 Experiments with Liver and Bladder Cells Exposed to 2-AAF (acetyl aminofluorene)

Mutation vs. Mitogenisis

- 2-AAF is hydroxylated in liver stem cells to an active mutagenic form, but not in older differentiated cells
 - Mutated cells proliferate at same rate as liver's normal growth rate
 - Thus, formation of tumors is related to the probability of mutations in the stem cells
- In bladder, N-hydroxyaminofluorene is formed (highly mutagenic); can mutate any age of cell in the bladder
 - Tumors formed only at doses above 60 ppm as a result of mitogenic (hyperplasia) response
 - Tumors formed only when cell proliferation occurs

Main Mechanisms of Nongenotoxic Carcinogenicity

- Chronic cell injury
- Immunosuppression
- Increased secretion of trophic hormones
- Receptor activation
- Other (e.g., cytochrome P450 induction)

Lima and Van der Laan 2000

Biologically Based Classification Scheme for Rat Carcinogens

- Genotoxic
 - Cause DNA mutations
 - Theoretically no threshold
 - ✓ However, dose level can still cause cell toxicity
 - ✓ Depends on metabolism in specific tissues
 - Effect likely to persist after dosing stops
- Non-genotoxic (epigenetic)
 - Reaction or interference of contaminant with specific cell receptor or growth factor
 - ► Usually a threshold for an effect
 - Effect related to cell toxicity and regeneration
 - Cells "heal" after dosing

Cancer Testing Dilemma: Response at high testing doses are extrapolated to low dose exposures. Estimation of hazard depends on knowing the "true" shape of the dose-response curve Observed Responses No. of Tumors Threshold Assumption of Nonlinear Response Dose Dose

Misconceptions About Carcinogenicity

- · Cancer rates are soaring
 - Actually, incidence rate of some types of cancer is stable, some is decreasing, and some is rising
 - ✓ For example, NHL (Non-Hodgkin's) lymphoma and prostate cancer rates have increased
 - ✓ Stomach and lung cancer incidence have declined
 - Weir et al. 2003
 - Cancer incidence rates for all cancer sites combined increased from the mid-1970's through 1992;
 - ✓ Decreased from 1992 through 1995;
 - Observed incidence rates for all cancers combined were essentially stable from 1995-2000

Misconceptions About Carcinogenicity

- · Cancer rates soaring
 - Cancer is disease of old age

Cancer Misconceptions

- High dose tests with rodents are valid for assessing low dose exposure effects in humans
 - Problems with cell toxicity
 - Leads to cell death, cell proliferation, and proliferation of unrepaired DNA damage

Misconceptions About Carcinogenicity

- Most carcinogens are synthetic
 - Half of all compounds tested for cancer and shown to be positive are naturally occurring food biochemicals

Neoplasia in Fish & Mollusks

- Noticed problem in early 1980's especially in contaminated lakes
 - Large oral, dermal, and liver neoplasias
- However, in the 1940's, tumors had been noted in fish
- Polycylcic aromatic hydrocarbons believed to be one of the leading causative factors
- Mollusks on eastern shore of Maryland noted with high incidence of sarcomas in the 1980's
 - Could be related to viral infection or to chemical contamination

Endocrine Related Soft Tissue Effects

- Male summer flounder injected with estradiol (twice @ interval of two weeks)
- Caused elevation in vitellogenin levels comparable to field-collected fish (carp) near sewage treatment plant outfalls
- Observed hepatocyte hypertrophy, disruption of spermatogenesis, obstruction or rupture of renal glomeruli
- Observed accumulation of hyalin material, protein material that was hypothesized to be partially vitellogenin (based on immunochemical visualization methods)

Folmar et al. 2001 Aquatic Toxicol 51:431-441

