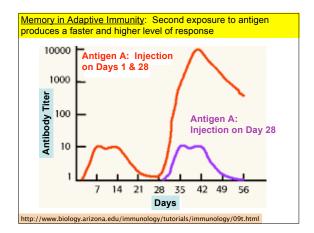


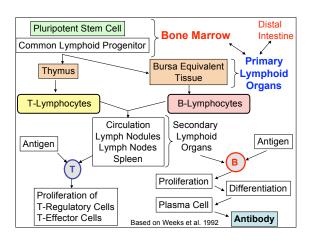
Immunity

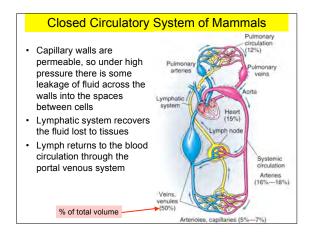
- · "Non-specific", Innate Immunity
 - "First line of defense"
 - More accurately described as broadly specific
 - No memory
 - i.e, after infection, cells do not recognize specifically the pathogen or toxin
- Specific, Adaptive (or Acquired) Immunity
 - "Second line of defense"
 - Activated by and directed against specific antigens
 - Antigen: "a protein or other substance that elicits immune system activation"
 - Antigen: "anything that can be bound by an antibody"
 - Has memory: increases with strength after each encounter with pathogen or toxin

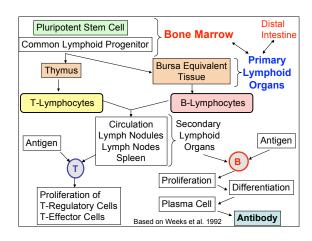
Innate Immunity

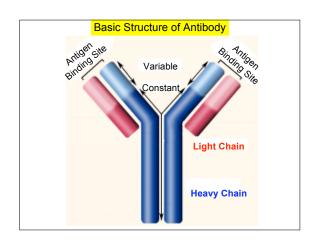
- · Physical Barriers
 - Skin, mucous membranes
- · Physiological factors
 - pH, temperature, oxygen tension limit pathogen growth
- · Protein secretions into external body fluids
 - Lysozyme enzyme (saliva, tears)
 - Complement, interferons, C-reactive proteins
- · Phagocytic cells
 - Including macrophages & polymorphonuclear leukocytes
 - Recognize foreign cells by broadly specific receptors (usually for carbohydrate structures on cell)

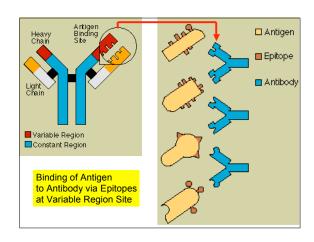


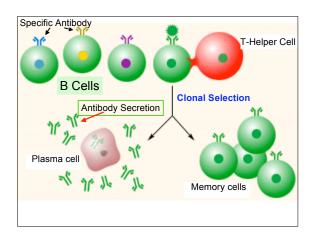

Acute Inflammation

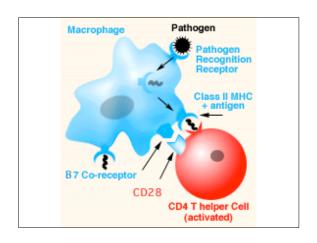

- Acute inflammatory response is a key characteristic of the innate immune system
 - Many infections, especially where small wounds are entry routes, are eliminated by the combination of complement and recruitment of phagocytes
- · Functionality
 - Reduces spread of damaging agents to nearby tissues
 - Increases disposals of cell debris and pthagens
 - Facilitates repair processes
 - Caused by release of histamine and prostaglandins by certain leukocytes

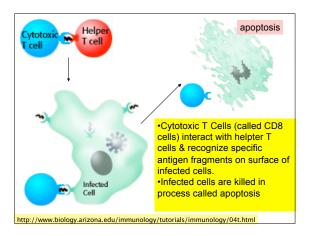

Adaptive Immunity

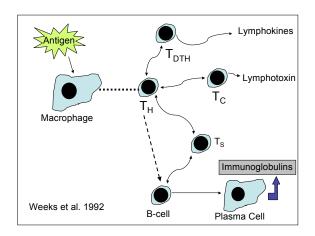

- Immune response activated by and directed against specific antigens
 - I.e., response mechanism is "adapted" to idiosyncrasies of the foreign cell or toxin
- · Characterized by "memory"
 - Once challenged with an antigen, immunity will persist to this specific antigen
 - Causes a decrease in lag time and an increase in response level to repeated infections
- Two Types of Mechanisms (both involving differentiated lymphocyte cells)
 - Humoral Immunity (involves B cells)
 - Cellular Immunity (involves T cells)

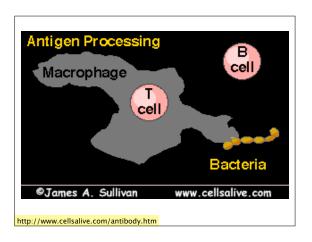


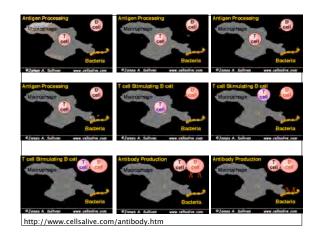


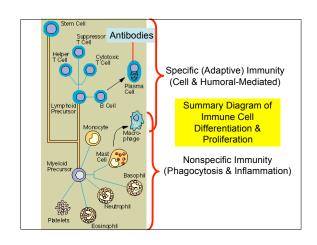


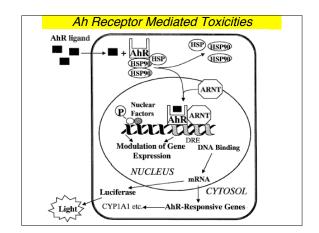











Ah Receptor Mediated Immunotoxicity

- Certain polyhalogenated hydrocarbons, dibenzodioxins, and dibenzofurans cause immunotoxicity characterized by a "wasting" syndrome, atrophy of the thymus, & alterations in Tcell mediated immune functions
 - Especially includes certain PCB congeners and chlorinated dibenzodioxin & dibenzofuran congers
- The detailed mechanism of how these compounds cause immunotoxicity is unknown but all of them react with a receptor called AhR that causes the transcription of arylhydrocarbon hydroxylase, a P-450 mediated microsomal enzyme (i.e., P-4501A1)
- The most potent of these immunotoxins is TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)

 Output

 Output

 Description:

<u>Case Study</u>: Marine Mammals Exposed to Polyhalogenated Aromatic Hydrocarbons

- Problem: Marine mammals seem to be exhibiting high incidence of disease
 - In some cases "beachings" seem to have no natural cause
- de Swart et al. (1996) fed contaminated herring to one group of seals and comparatively uncontaminated herring to another group of seals
 - The contaminants included PCBs, DDT, and dioxin (expressed as toxic equivalents based on TCDD, tetrachlorodibenzo-p-dioxin)
- Measured residues in fat and blood and immunological activity before & after fasting

Contaminant levels observed in seals after fasting for 15 days following consumption of Baltic (contaminated) fish and Atlantic (comparatively uncontaminated) fish (de Swart et al. 1996)

Sum TEQs

Immunological Parameters--Contaminated Herring Group Relative to "Uncontaminated" Herring Group

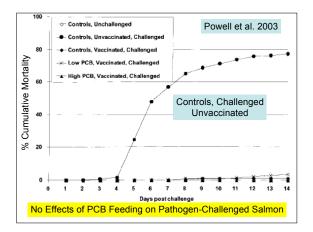
de Swart et al. 1996, EHP Supplements

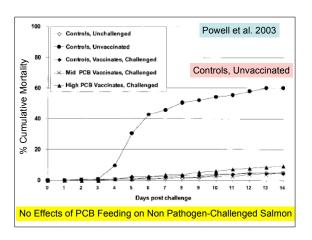
Immunological Parameter	Effect
NK (natural killer) cells	Down
T lymphocytes	Down
B lymphocytes	No Difference
Hematology: Lymphocyte Counts in Peripheral Blood	No Difference
Hematology: Neutrophhil Counts in Peripheral Blood	Up

Conclusions from Herring Feeding Study

- Immunological parameters representing specific immunity (lymphocytes) were down regulated in association with higher levels of polyhalogenated aromatic hydrocarbon compounds in fat and blood
- Neutrophils in blood (represented nonspecific immune response) were upregulated
- Natural populations exposed to similar levels of contaminants may experience effects on immune system

de Swart et al. 1996


de Swart et al. 1996


Conclusion from Herring Feeding Study--Fasting Effects

- Fasting was associated with a 2-fold increase in blood levels of polyhalogenated organochlorines, but no effect on blood levels of Ah receptor-binding compounds
- Fasting alone, regardless of diet caused a 35% drop in circulating lymphocytes and a slight increase in NK-cell activity
 - However other lymphoproliferative response remained the same in the contaminated herring group.
- Short-term fasting did not present an additional immunotoxic threat

Do PCBs Cause Immunotoxicity in Fish?

- PCBs have been implicated as immunotoxins based on rat studies
- Powell et al. 2003 fed different levels of PCBs to fish
 - PCBs were formulated as Aroclor 1254
- · Challenged fish with pathogen
- Some fish vaccinated, others not vaccinated

