

Instructor: Allan Felsot afelsot@tricity.wsu.edu

Fall 2005

Fundamentals of Environmental Toxicology

Lecture 4/5

Pharmacokinetics (Toxicokinetics)

Pharmacodynamics (Toxicodynamics)

Part 2

Reaction Rate (Kinetics)

- Importance of metabolism in detoxification or activation of a toxicant depends on
 - Capability of detox. enzymes for catalyzing the reaction
 - Dependent on ability of toxicant to form a complex with the detox, enzyme
 - Rate of reaction
 - · Faster reactions will increase the rate of elimination of
 - Less re-circulating to blood and tissues

Reaction Rate

- Described by mathematical functions known as rate laws
 - Describe the relationship between tim and the concentration of the toxicant
- Two commonly used functions
 - Power rate law
 - First-order rate equation
 - Hyperbolic kinetics
 - Michaelis-Menton Kinetics

Reaction Kinetics

Rate Law = a mathematical function or differential equation describing the turnover rate of a compound as a function of the concentration

$$Rate = \frac{-dC}{dT} = kC^{n}$$

First Order when n = 1

or

$$\frac{d\left[C\right]_{_{l}}}{dt} = -k\left[C\right]_{_{0}} \quad \text{Differential eq.}$$

 $[C]_{t} = [C]_{0} \cdot e^{-kt}$ Integrated eq.

Based on Nolan et al. (1984) Tox. Appl. Pharm. 73:8					
Chlorpyrifos	0.5 mg/kg Oral	5 mg/kg Derma			
Absorption Half-Life (hr)	0.5	23 ND			
Elimination Half-Life (hr)	27				
Plasma Distribution/Time (ug/mL/h)	46	6.2			
% Dose Recovered in Urine	70	1.3			
Plasma Cholinesterase (% of Predose)	15	70			
Erythrocyte Choliesterase (% of Predose)	70	80			
Signs/Symptoms of Toxicity	No	No			

Corn Rootworm	Hours	After D	osina w	ith Isof	enph
Life Stage	1	2		8	24
Adult	Hsin & 0	Coats (198	6) Pestic. E	Biochem. F	hysiol.
External Rinse	17	11	8	5	1
Internal Extract	71	65	54	44	16
Container Rinse	4	4	10	18	35
Container Parent	3	2	3	2	1
Larvae					
External Rinse	7	2	1	0.4	0.2
Internal Extract	59	46	38	21	10
Container Rinse	9	13	19	33	43
Container Parent	9	11	14	21	23

Toxicokinetics & Plants

- All mechanisms & processes same as in animals
- However, must consider dose transfer from the environment (ditto if considering aquatic and soil dwelling animals)
 - Other parameters important
 - Soil sorption coefficient (Koc)
 - Air:water transfer coefficient (K_H)

