

Absorption (Penetration)

- Contaminant or toxicant crosses the outermost barrier of an organism
 - Chemical transfers from site of contact into the cells and eventually into the general circulation
 Skin, cuticle, cell wall
- Also applicable to crossing integument of gastrointestinal tract (oral or ingestion exposures)
- Also applicable to crossing integument of lungs or other ventilatory organs (inhalational exposures)

Route of Exposure--Dermal

- Absorption
 - Movement into the outer most dead layer, the stratum corneum
 - Facilitated by skin lesions
- Penetration
 - Movement through corneum
 - Diffusion into capillaries
- Influenced by temperature & humdity

- Inhaled material must be a gas, vapor, or fine particle
- Lining of nose, upper throat, and lung with continuous layer of mucous
 - Swallowing can make an inhalational exposure an oral exposure
- Inhalation potential depends on particle size

Route of Exposure--Oral

- The veins draining the esophagus, intestines, and rectum flow directly into the portal vein, which empties into the liver.
 - All ingested material delivered to the liver before entering general circulation
 - Allows liver to activate or detoxify compounds
- The drainage of the mouth cavity is into the jugular vein; allows direct entry into systemic circulation

- Waxy layers on invertebrate cuticle & plant leaves
- Mucilaginous layers on plant roots
- Possible movement along junctions between cells into interstitial spaces
- Lipid bilayer of cell membranes

Absorption

- Diffusion is main mechanism driving partitioning across membranes
- Extent controlled by Kow (hydrophobicity parameter) of chemical
- Rate controlled by concentration (firstorder process)

Hydrophobicity

- Surrogate measure is Kow, the octanol:water partition coefficient
- Higher the value, the more the tendency to partition into an "oily" (lipid-dominated) phase (matrix)
 - Free energy at a minumum
 - Entropy at a maximum
- Thus, hydrophobic compounds cross cell membranes more easily than hydrophilic compounds
- However, extremely hydrophobic compounds might be trapped in lipid layers

Distribution

- The process of reversible transfer of a chemical from general circulation into the tissues
 - Animals: blood ---> organs
 - Plants: xylem/phloem ----> foliage/fruit
- Usually very rapid
 - Rate limited by rate of blood ("sap") flow
 - Polarity of the chemical (or hydrophobicity)

Elimination

- Metabolism
 - Interested in reactivity and rate of reaction
 - Phase II reactions--Conjugations
 - Chemicals usually conjugated to glutathione (a tripeptide) or sugar moiety (glucose; galactose) after initial oxidation (or other metabolism)
 - Water solubility increased, facilitating filtration by kidneys and eventual excretion
 - Acylanilide herbicides safened by inducers of glutathione-S-transferases

Selectivity

- The differential toxicity of a compound between a pest organism and a nontarget organism
 - Conferred by unique mode of action or insensitive biochemical target (pharmacodynamics)
 - Common among herbicides
 - Sulfonylureas, imidazolinones, glyphosate, phenoxys
 - Insecticides
 - Microbial insecticides; insect growth regulators
 - Conferred by extent (reactivity) and/or rate of metabolism (toxicokinetics)
 - Pyrethroids

